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Higher Order Hierarchical Curved Hexahedral Vector
Finite Elements for Electromagnetic Modeling

Milan M. lli¢, Sudent Member, |EEE, and Branislav M. Notar§ Member, |EEE

Abstract—A novel higher order finite-element technique An alternative that can greatly reduce the number of un-
based on generalized curvilinear hexahedra with hierarchical knowns for a given problem and enhance further the accuracy
curl-conforming polynomial vector basis functions is proposed gnq efficiency of the FEM analysis in all classes of applications
for microwave modeling. The finite elements are implemented for . . . .
geometrical orders from 1 to 4 and field-approximation orders IS t_he higher order_(or 'afge'doma'”) com_putanonal apprqach.
from 1 to 10 in the same Galerkin-type finite-element method This approach utilizes higher order basis functions defined
and applied to eigenvalue analysis of arbitrary electromagnetic in large geometrical elements (e.g., on the orderiofn
cavities. Individual curved hexahedra in the model can be as large each dimension). Only relatively recently the computational
as approximately 2A x 2X X 2A, which is 20 times the tradi-  g|actromagnetics (CEM) community has started to extensively

tional low-order modeling discretization limit of A/10 in each . tigat d lov hiah der finite el t d hiah
dimension. The examples show excellent flexibility and efficiency Investigate and employ higher order inite elements and higher

of the higher order (more precisely, low-to-high order) method at Order basis functions [7]-[17]. Higher order electromagnetic
modeling of both field variation and geometrical curvature, and modeling is definitely becoming the mainstream of activity in
its excellent properties in the context ofp-refinement of solutions, CEM. However, although several types of geometrical elements
for models with both flat and curved surfaces. The reduction 54 pasis functions of arbitrarily high orders have been pro-
in the number of unknowns is by an order of magnitude when -
compared to low-order solutions. posed and described [2], [7], [1Q], [1_5], [17], [18], almost none
of the reported results and applications demonstrate actual use
and implementation of models of orders higher than two. No-
table examples of higher order FEM modeling are hierarchical
vector elements proposed in [15] and [16], where elements in
I. INTRODUCTION the form of tetrahedra with field-approximation basis functions

HE finite-element method (FEM) for discretizing partialmc up to the fourth order are demonstrated_, and interpolatory
differential equations in electromagnetics is an extremel ctpr elements proposed in [8], where third-order elements
powerful and versatile general numerical methodology f e implemented in both tetrahedral and hexahedral forms. In

electromagnetic-field simulation in RF and microwave aédg'}:'g:\’/l Itt s?etrgstt.hatltheretexst r:jof'ginerlal andt an;?thonal
plications [1]-[20]. However, practically all the existing”" oois that impiement curved finite €lements ot higher

three-dimensional (3-D) FEM electromagnetic tools ardeometrical orders that would enable accurate and efficient

low-order (subdomain) techniques—the electromagneﬁ‘&()de''ng of curvature.

structure is modeled by volume geometrical elements tfgt-rh's paper proposes a novel higher order (large-domain)

are electrically very small and the fields within the elemen alerkin-type finite-element technique for 3-D electromag-

are approximated by low-order (zeroth- and first-order) baﬁgtics 'based on higher order geon?e“ica' modelin'g af‘d higher
der field modeling, and presents its implementation in eigen-

functions. More precisely, the elements are on the ord@f ) ) ) .
of A/10 in each dimension) being the wavelength in thevalue analysis of arbitrary 3-D inhomogeneous electromagnetic

medium, in both closed-region (e.g., waveguide/cavity) ar?ff‘v't'est' The volume ﬁlergents_?doptgdtforthletapp[]oxmhatg)n 0];
open-region (e.g., antenna/scattering) problems. This resultd {ne fyare getn_eral |zed cur\#]near N erpg g ory fexat.e re}o
a very large number of unknowns (unknown field-distributioﬁ: irary ggomtg ”Ci f9r|ders.'th' etrp])roplose ta5|s #nc |or;]§ olr
coefficients) needed to obtain results of satisfactory accura ’lapprfoan_a |on(|) 1€ .S;N' '? t;ee_erpen ts are ;erabr_ci ica
with all the associated problems and enormous requireme -con_(r)rr]mmgl; PO yr:omla vec (I)r aS|ts durfm '9{25 orar ”‘t"‘fy |
in computational resources. In addition, commonly used 3Y ers.f eli e;nendsf.alrgz 'mp e”."'e”t.e 0; ef georlnte nl%a
elements are in the form of bricks, tetrahedra, and trianguf&ﬁ?ﬁrs rom FECI)\/I anth '3 _l:ﬁpprOX|E[nar|]op orders brlom ° lent
prisms, all with planar sides, and, thus, they do not provid'% etsame d I.me od. the nexv echnique ?.na” es exfce t?n
enough flexibility and efficiency in modeling of structures witpurvature modeling (e.g, a sphere is practically pertectly
modeled by a single curved hexahedral finite element) and
pronounced curvature. ; R .
excellent field-distribution modeling (e.g., tenth-order polyno-
mial field approximation in the three parametric coordinates
in a hexahedral finite element). This enables using as large as
Manuscript received August 7, 2002; revised November 5, 2002. approximatel2 x 2) x 2 curved FEM hexahedra as building
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(e-mail: bnotaros@umassd.edu). is 20 times the traditional low-order modeling discretization
Digital Object Identifier 10.1109/TMTT.2003.808680 limit of A/10 in each dimension). Element orders in the model,
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however, can also be low, so that the lower order modeling
approach is actually included in the higher order modeling.
Most importantly, since the proposed basis functions are
hierarchical, a whole spectrum of element sizes (from a very
small fraction of\ to 2)\), geometrical orders (from 1 to 4), and
field-approximation orders (from 1 to 10) can be used at the
same time in a single simulation model of a complex structure,
making this method essentially a combined low-to-high-order
method. Additionally, the technique provides a whole range
of element shapes (e.g., brick-, slab-, and rod-like planar
hexahedra, as well as spherically, cylindrically, and elliptically
shaped curved hexahedra, and also other “irregular” and/or
curved hexahedral shapes) to be used in a simulation model as W
well. o
The one-dimensional (1-D) version of the new technique was -
presented in [19]. The preliminary results of 3-D eigenvalue e 23
analysis of rectangular air-filled metallic cavities for the higher r o
A8l

-

order model with a single trilinear hexahedron (hexahedron of /
the first geometrical order) were presented in [20]. Similar (di- 20/
vergence-conforming) higher order basis functions in trilinear /o
hexahedral volume elements have been used for the approxi- '
mation of volume currents in the large-domain (entire-domain)
volume-integral-equation Galerkin-type method of moments
(MoM) [21]-[24]. A surface (boundary element) version of
this method, using bilinear quadrilateral surface elements
with twofold higher order divergence-conforming polynomial (b)

basis functions for the approximation of surface currents, hﬁa. 1. Two simplest generalized hexahedra described by (1). (a) Trilinear
been used in the Galerkin-type large-domain MoM solution t@xahedrori X = 1). (b) Triquadratic hexahedrdi< = 2).

surface integral equations [23]-[25].

Section Il of this paper presents the mathematical bacrl]<—
ground and numerical components of the new finite-elemeR?
technique. This includes the generation of generalized curvi-
linear hexahedral elements for higher order modeling
geometry, implementation of hierarchical polynomial vectqg
basis functions for higher order modeling of fields within the
elements, and Galerkin testing procedure for discretizing the M K K K
curl—curl electric-field vector-wave equation in the context of(y, 4 ) =S "7, - pi(u, v, w) = Z Z Z @it 00
eigenvalue analysis of arbitrary electromagnetic cavities. In =1 =0 m—0 1=0
Section lll, the efficiency, accuracy, and convergence of the —1<uv,w<1l (1)
higher order elements are evaluated and discussed for various
geometries. The results obtained by the new FEM technigu@erer,, r», ..., andr,, are the position vectors of the interpo-
are compared with the analytical solutions and the numerigation nodesp; (u, v,w) are Lagrange-type interpolation poly-
results obtained by low-order FEM techniques using smalbmials satisfying the Kronecker delta relatigtu;, v;, w;) =
bricks, tetrahedra, and triangular prisms, respectively, as bagig with «;, v;, andw, representing the parametric coordinates
elements. Solutions obtained by means of the higher ordgfrthe jth node, ands,.,.; are constant vector coefficients re-
FEM require significantly fewer unknowns (reduction by amated tory, 7, ..., ;. Shown in Fig. 1(a) is the first-order
order of magnitude) as compared to the solutions obtained @Ilément( K = 1), called the trilinear hexahedron [19]-[24],
the low-order methods. The examples show excellent flexibilislong with the visible coordinate lines. It is determined solely
and efficiency of the presented finite elements at modeling Qf/ M = 8 interpolation points—its eight vertices. Its edges
both field variation and curvature, and their excellent potentighd all coordinate lines are straight, whereas its sides, so-called
for p-refinement procedures. bilinear quadrilateral surfaces [23]-[25], are somewhat curved
(inflexed). Note that even these hexahedra provide the same or
better flexibility for geometrical modeling of general electro-
magnetic structures, as compared to commonly used elements
in the form of bricks, tetrahedra, and triangular prisms. The

As basic building blocks for geometrical modeling of 3-Dsecond-order elemerif{ = 2), called the triquadratic hexa-
electromagnetic structures of arbitrary shapes and material iredron, shown in Fig. 1(b), is determined kf = 27 interpo-
homogeneities, we adopt generalized curved parametric hebedion points arbitrarily positioned in space.

4
;

/
16y
17
8 /
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dra [2] of higher (theoretically arbitrary) geometrical orders.
generalized hexahedron is determined b= (K + 1)3
ints (interpolation nodes) arbitrarily positioned in space,
(K > 1) being the geometrical order of the element. It can
e described analytically as

Il. NOVEL HIGHER ORDER FINITE-ELEMENT TECHNIQUE
FOR 3-D ELECTROMAGNETICS
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Of course, parametric bodies of highdf > 2) geometrical where./ is the Jacobian of the covariant transformation
orders provide additional flexibility and accuracy in modeling of
complex curved structures. However, the use of flexible higher J=(a, X ay) - ay. (6)
order curved elements is cost effective only if they can be made
electrically large, which implies the use of higher order field exFhe unitary vectors are given by
pansions within the elements as well. Furthermore, in order to
make the modeling of realistic structures optimal, it is conve- dr dr _dr @)

. . . . a, = — a, = — Ay = —
nient to have elements of different orders and sizes combined du dv dw

together in the same mesh. If both of these requirements are t9n r given in (1). The field expansions automatically satisfy

be satisfied, implementation of hierarchical-type higher ordgontlnwty boundary conditions for tangential fields on surfaces
polynomial basis functions for the approximation of fields is thghared by adjacent hexahedra in the model (curl-conforming

right choice. . - . . : .

Our FEM formul_ation starts with the curl—curl eIectric—field;uicg:éoennsgé_'\égﬁ;?ﬁi:;ﬁg?&hgzel: SO erge|:1 b;ii?;%fg;tw ;crr:e
vector-wave equation linear( K = 1) hexahedra for the large-domain (entire-domain)

Vxpu'VxE—kieE=0 (2) MoM solution to volume integral equations [21]-[24]. Basis

functions defined in (4) are hierarchical functions (each lower
‘order set of functions is a subset of all higher order sets). They
enable using different orders of field approximation in different
elements, as well as in different directions within each element,
e ’ ’ T M which allows for a whole spectrum of element sizes (e.g., from
implied t|me—ha.rmon|c v_arlatlon. At material interfaces, avery small fraction of to a couple oft) and shapes to be used
must be tangentially continuous. in a simulation model. Hierarchical basis functions, on the other

We represent the electric-field intensity vector inside eVeland, generally have poor orthogonality properties, which re-
hexahedron as sults in FEM matrices with large condition numbers. However,

wheree,. and u,. are complex relative permittivity and perme
ability of the inhomogeneous medium, respectivdlyjs the
electric-field complex intensity vectoky = w./gono is the
free-space wavenumber, ands the angular frequency of the

a7t Ny No Nu No1 N several approaches for improving the orthogonality of hierar-

E = Z Z Z ik Fuijr + Z Z Z Qwijk Fuijr chical higher order basis functions and the condition number of

=0 j=0k=0 i=0 j=0 k=0 matrices in the context of both the FEM and MoM have been

Nu Ny Nl proposed to cope with this problem [13], [15], [26], [27].

+Z Z Z wijk Fuwige (3) Properties of the basis functions in (4) allow connection of
i=07=0 k=0 any two elements regardless of the adopted geometrical orders,

where f are curl-conforming hierarchical-type vector basifield-expansion orders, or local orientations. The only require-
functions defined by ment that needs to be satisfied is the geometrical compatibility

of the joint face. In our assembly procedure, the geometrical in-

S uiji =u' Pj(v) Pu(w)a, terpolation nodes associated with the two elements that govern
Foijr =Pi(u)v’ Po(w)a, the geometry of the common face are ordered in a way that en-
Fuije =Pi(w)Py(v Ywkal, sures a symmetricgl or ant.isymmetrical variation of the corre-
1—u, i=0 ;pondlng parametric coordinates. 'I_'he continuity of the t_angen-
w1 i=1 tial field across the common face is enforced by equating the
Pi(u) = b — 1’ i > 92 even corresponding tangential-field coefficients associated with the
w— u: P> 3: odd, elements, with additional corrections due to possibly different
1 <uv,w< 1. 4) element orientations. The procedure has to be repeated for all

faces shared by pairs of elements in the mesh. For elements with
N., N, and N,, are the adopted degrees of the polynomialifferent geometrical orders, the same parametric presentations
approximation, which are entirely independent of the elemesih both sides of the common face are ensured by placing the in-
geometrical ordeK andav,;jx, vwijr, @Nday,ji. are unknown terpolation nodes of the element with a higher order at positions
field-distribution coefficients. The mixed-order arrangement @hat match the parameter values already determined by the inter-
sum limits in (3) is in accordance with the reduced-gradiepblation nodes of the element with a lower order. For elements
criterion [18], which is a preferable choice for modeling ofvith different field-expansion orders, the tangential-field coef-
waveguiding structures and 3-D resonant cavities, where fiixtents are matched only up to the lesser of the corresponding
use of complete functions may lead to spurious solutions aorblers and are set to zero for the remaining tangential-field basis
incorrect results. The reciprocal unitary vecters a,, and functions. This order reduction pertains to the common face

a,, in (4) are obtained as only and does not influence the expansions throughout the rest
. Gy X Gy of the volumes of the elements.
C =7 According to the Galerkin testing procedure, weighted resid-
;G X @y uals of (2) are formed as
=T

o =% X G (5) S VX p 'V x EQV — k3 | e[
\4 \4

[ =2 i EdV =0 (8)
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whereV is the volume of a generalized hexahedron j%q TABLE |

; o o o ] ERROR OFk, FOR THEEIGENVALUE ANALYSIS OF A RECTANGULAR CAVITY
stands for any of the funCUOlﬁuZ‘jk' f'vijk’ or fwwk The first (1 cmx 0.5 cmx 0.75 cm). () ©MPARISON OF AHIGHER ORDER

integral in (8) is then transformed by employing the vector “gngie-ELemenT FEM aND FOUR REFERENCEFEM SOLUTIONS.
analog to Green'’s first identity, which yields the weak form  (b) CONVERGENCE OF THEHIGHER ORDER SINGLE-ELEMENT FEM

representation of (2) suitable for numerical solution. Finally, ~ W/TH INCREASING THEFIELD EXPANSION POLYNOMIAL ORDERS
the boundary conditions are imposed over the boundary surf: Error 1%
of the entire FEM domain, providing a numerical interfac mode k, [cm™] Prisms [5] Bricks [4] Tetrahedra [4] LT/QN [9] Higher-order

between the FEM domain and remaining space. In analy (Exact) 382 270 260 k204 k29
of metallic cavities, however, these conditions reduce to tl———— Unl(‘)“;’;v"w“};"fgms U“](‘)n;fns Unons":ms Hrknosns
. . . 101 . . . B . B
requirement that the tangential componentidfvanish near Ty, 7.025 232 223 0.70 0.57 0.53
the cavity walls, which is the simplest mesh terminatio TE. 7551  0.53 2.58 1.00 0.18 0.66
technique and is easily enforced ayriori setting to zero the TFor 7351 0.64 3.3 0.56 149 2.38
) o 2 . ) T™, 8179 022 2.09 2.29 0.56 0.56
field-distribution coefficients associated with the tangenffal -, 5179 .09 070 157 056
on the sides (generalized quadrilateral surfaces) of eleme T™., 8.886 2.98 3.53 0.84 191
adjacent to cavity walls. This leads to the following generalize 2z 5247 338 L.70 049 276
eigenvalue problem:
, (a)
[A{e} = k5 [Bl{a} ©)
|[Error] [%]
wherekZ are the eigenvalues of the system. The elements Mode ko [em’] Higher-order FEM
matriced A] and[B] corresponding ta-components of the field (Exact 29 240 756
. d testi . b Unknowns Unknowns Unknowns
expansion and testing are given by TE 5236 042 074 107 017 10°
TMi5 7.025 0.53 0.74 10° 0.17 10
U ~1 . y TEo1, 7.551 0.66 0.74 107 0.17 10
VUi /VN " (V o ’“'U’“) (VX Suiju) 4V TE  7.551 2.38 020107 049 10°
and T™My 8.179 0.56 0.74 10 0.17 10°°
TE, 8.179 0.56 0.74 10° 0.17 10"
TMaio 8.886 1.91 0.15 10" 0.35 10"
TEp 8.947 2.76 0.26 10 0.62 10
UUB%j‘kijk :/ 51’fu€§'i¢ '-fuijkdv (10)
v
(b)

respectively, with analogous expressions for the elements cor-
responding to other combinations of field components. Starting
from (4), the curl of the functiorf ;. can be found as [10]  on tetrahedra [9]. In the higher order FEM approach, the
cavity is modeled by a single trilinear hexahedral element
V X fuije = % [uin(v) dfzg(w) ay — u dp;(v) P(w)aw (which, in this case, reduces to a brick) and.only 29 unknowns
w dv (N, = 4,N, = 2,N,, = 3). Note that this is literally an
(11) entire-domain FEM model (an entire computational domain is
_ ) represented by a single finite element). It can be observed that,
and analogous expressions hold for functigng, andf.;x-  for the same level of accuracy, solutions obtained by means of
This simplifies the evaluation ofi-integrals in (10), whereas o higher order FEM require significantly fewer unknowns,
B-integrals can readily be evaluated in their present form. Als compared to the solutions obtained by the other four
integrals are integrated numerically in the- v —w domain as  athods (29 compared to 382, 270, 260, and 204, respectively).
Table I(b) shows a very good convergence of the higher order
/v F(u,v,w)dV = / // Flu,v,w)J dudvdw  (12) pgMm with increasing the field-expansion polynomial orders
Lo toN, =N, = N, = 5andN, = N, = N, = 7, which
and the integration is carried out using the Gauss—-Legen@etresponds to a-refinement of the model, the respective total
threefold integration formula i(l0+ N,,) x (10+ N,) x (10+ numbers of unknowns being 240 and 756.
Ny,) points. The system in (9) is solved for all eigenvalues using The next example is a cubical air-filled metallic cavity of

a standard eigenvalue solver. 0.5 cm on a side. Fig. 2 shows a plot of the percentage error in
calculatingk, of the dominant degenerate eigenmodes against
the number of unknowns for the low-order FEM models with
As the first example, consider a rectangular air-filled metallismall rectangular bricks [4] and small tetrahedra [4] and three
cavity with dimensions 1 cmt 0.5 cmx 0.75 cm. Shown in higher order models. In the first higher order solution, the cavity
Table I(a) are the percentage errors of the resonant-madeepresented by a single (entire-domain) trilinear hexahedron
wavenumbersky computed by the higher order FEM andwith the field-expansion polynomial orders being varied from
those obtained by low-order FEM techniques using smaWl, = N, =N, =2to N, = N, = N,, = 7 (p-refinement).
triangular prisms [5], bricks [4], and tetrahedra [4], resped-he other two higher order solutions, using eight-element and
tively, as basic elements, as well as the technique usin2&element uniform meshes, are shown to indicate the model
linear tangential/quadratic normal (LT/QN) field representatidmehavior when the number of elements is increased as well,

I1l. NUMERICAL RESULTS AND DISCUSSION
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101 ¢
100 ¢
10-1F
102 ¢
= 103}
=]
é. 104 ¢
5 105 ¢ —a— Higher-order hex. (1 element)
& 106 E —— Higher-order hex. (8 elements)
= 107k —e— Higher-order hex. (27 elements)
—a— Tetrahedra {4]
108 ~-a-- Bricks [4] Fig. 3. Half-filled 1 cmx 0.1 cmx 1 cm rectangular cavity modeled by two
109 F = trilinear hexahedral finite elements.
1 1 1 i L n 1 L L
0 250 500 750 1000 1250 1500 1750
N b funk TABLE 1l
umober ol unknowns PERCENTAGEERROR OFko FOR THE CAVITY IN FIG. 3. A HIGHER ORDER
TwO-ELEMENT SOLUTION AND A LOW-ORDER
Fig. 2. Percentage error in calculatifg, of the dominant degenerate TETRAHEDRAL-MESH SOLUTION
eigenmodes of a cubical air-filled metallic cavity of 0.5 cm on a side against :
the number of unknowns for three higher order FEM models (with 1, 8, and - |[Error: ["/_o] Numepcal parameters of
hexahedra) and two low-order FEM models (with small tetrahedra and bricks Mode Exact k&, _Tetrahcedra [4] Higher-order  the higher-order modcl
[em™] 192 20-25 Exact Number  Orders
Unknowns Unknowns of Unknowns N,-N,-N,,
which corresponds to dnrefinement of the model. We observe Tz 3.538 0.1 0.004 21 4-1-4
t superiority of higher order FEM solutions over low-orde ~=2" 24 0.10 0.04 20 >3
great sup y orhigher ord _ TEz  5.935 0.32 1.07 21 414
ones. We also note that finer higher order meshesresultinawo Ttz 7.503 0.04 0.2 25 6-1-3
accuracy to number-of-unknowns ratio as compared to coar: TEze  7.633 0.97 0.9 25 6-1-3
TEzp;  8.096 0.50 0.58 21 4-1-4

meshes in this example. Generally, optimal modeling is achiev==
by keeping the elements as large as possible—of course, within
certain limits. Based on many numerical experiments, we have
adopted2X to be the maximal dimension of finite elements
and the general limit in the FEM procedure beyond which
the structure is subdivided into smaller, but still large-domain
optimal elements (note that the corresponding low-order FEM
limit is 0.1X). The same limit holds for higher order MoM
modeling [24].

Somewhat more complex cavities are now analyzed. First,
consider a half-filled 1 cnx 0.1 cmx 1 cm rectangular metallic
cavity with a dielectric filling of relative permittivity,. = 2 ex-
tending fromz = 0.5 cm toz = 1 cm (Fig. 3). Percentage 0.4 cm 04 cm
errors in computation ofo for the first SiX. modes are shown iI_’]Fig. 4. Air-filled rectangular cavity with a metallic ridge.

Table II. The results obtained by the higher order FEM using
two trilinear hexahedral finite elements, as indicated in Fig. 3,
) TABLE 1II
are compared against a low-order tetrahedral-mesh FEM solu-  covputep k, FOrR THE CAVITY IN FiG. 4. Two HIGHER ORDER
tion [4]. The number of unknowns in the higher order model is  HEXAHEDRAL-MESH SOLUTIONS [MODELS IN FiG. 5(a) AND (b)]

kept by roughly an order of magnitude smaller than that with the AND TWO L.OW-ORDER TETRAHEDRAL-MESH SOLUTIONS
low-order model, and excellgnt accuracy is gch|eved. Thg exact Calculated ko [om ]
numbers of unknowns and field-approximation polynomial or- Tetrahedra [4] Higher-order FEM
ders used in both higher order hexahedra for different modes are  ModeNo. 267 671 68 81
also given in Table lI Unknowns Unknowns Unknowns Unknowns
. ' L _ 1 4.941 4.999 5.083 5.088
Next, consider an empty rectangular cavity with a metallic 2 7084 7354 7572 7471
ridge, shown in Fig. 4. Table Illl shows the computed results 3 7.691 7.832 8.207 7.903
for the free-space wavenumbekg of the cavity (there is no ‘5‘ ;g?; ;‘9"5‘; 2‘7‘1‘3’ ;-gf;
exacF analytical solution tp this prob_lem). Two higher order 5 8593 8.650 9108 9.001
solutions are presented with the cavity modeled by three and 7 8.906 8.916 9.458 9.111
five trilinear hexahedra, shown in Fig. 5(a) and (b), and the g g-égg g;g; 18(2)‘2‘ ?383
resulting total numbers of unknowns 68 and 81, respectively. The 10 9.837 9927 10,69 1037

adopted field-approximation polynomial orders in individual
directions are indicated in this figure. Shown in Table Il are
also the results obtained by two low-order tetrahedral-megtsults is observed; the reduction of the number of unknowns
FEM models [4] with 267 and 671 unknowns, respectively. fvith the higher order FEM again being by up to an order of
good agreement between the higher order and low-order FEMignitude when compared to the low-order FEM. We note
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TABLE IV
ERROR OFk; COMPARISON FOR THEEIGENVALUE ANALYSIS OF AN
AIR-FILLED SPHERICAL CAVITY, 1 cmIN RADIUS. (a) HGHER ORDER
SINGLE-ELEMENT FEM MODELING WITH SECOND-ORDER GEOMETRICAL
APPROXIMATION AND (b) FOURTH-ORDER GEOMETRICAL APPROXIMATION,
AND A LOw-ORDER TETRAHEDRAL-MESHFEM SOLUTION

|Error| [%]
Tetrahedra [4] Higher-order FEM with
2" order geometry

Unknowns 300 36 108 240 450
Mode Exact &y
[cm']

TMoio 2.744 2.04 460 1.00 094 091

TMi11 even 2.11 460 1.00 094 091

TMi11,04d 2.44 460 1.00 094 091

TMoa 3.870 2.02 685 139 089 085

TMia1even 2.99 6.85 139 089 085

TMi21004 3.20 685 447 089 085

TMaz1 even 4.34 15.57 447 139 1.09

TMa21,0aa 4.59 15.57 447 139 1.09

(b) TEo 4.493 1.33 1138 730 119  1.09

TE 11 even 0.47 11.38 730 1.19 1.09

Fig. 5. (a) Three- and (b) five-element higher order FEM hexahedral models

of the cavity in Fig. 4. The adopted field-approximation polynomial orders in Eion 125 1138 730 119 109
individual directions are also indicated.
(a)
also a very effective three-element hexahedral FEM modeling
of this nonstandard shape in the mesh in Fig. 5(a). Howevel [Exror| [%]

Tetrahedra [4] Higher-order FEM with

the five_-el_ement n_10de|_in Fig. _5_(b_) provides_better accuracy 4% order geometry
at predicting the fields in the vicinity of the ridge and better Unknowns 300 36 108 240 450
overall accuracy of the results. Mode  Exact ko

As an example of higher order FEM modeling of curved lom ]

Table 1V(a) and (b) show the percentage error il Voo 2744 204 279 078 010 023
structures, Table | P ge error it oy, ., 211 279 078 010 025
calculating kg for first several modes of an empty spherical ™, 2.44 279 078 010 025
cavity (1 cm in radius). The sphere is modeled by a single ™o 3.870 2.02 3.40 0.088 0.0067  0.02
(entire-domain) curved hexahedron of the sec¢Ad = 2) TMiz10en 299 340 0.088 00067 0.02

- B TM 21,044 3.20 340 044 0.0067 0.02
geometrical order [see Table IV (a)] and fourthk = 4) TMa21 even 434 7.84 044 0093 023
geometrical order [see Table IV (b)], respectively, and field-ap- ™21 4.59 7.84 044 0093 023

imati ; _ _ _ TEo1 4.493 1.33 421 379 108 028
proximation orders are varied frolv, = N, = N, = 3 TE 07 451 379 108 098
to N, = N, = N, = 6 in both solutions g-refinement). TEl:;g ) 25 421 379 108 028
The results are compared with a low-order tetrahedral mes
FEM model [4]. We observe that the second-order geometrica (b)
approximation [see Table IV(a)] with only 108 unknowns (64%
less than with the low-order model) yields very good results 5.0
for the first eight modes. The-refinement improves the results as5f % o Tetrahedra [6] )
for all modes, whereas an inherent geometrical error is always 40t | E\ = Higher-order hex. (20 order geometry)

. . . . b | 4 - Higher-order hex. (4! order geometry)
present. A considerable increase in accuracy for all modes is 354 N
observed when the curved hexahedron of the fourth geometrical = 30 K D\\\
order is used [see Table IV(b)]. Note that, here, as low as only 3: 25 i \\\
36 unknowns suffice for the analysis of lower modes. 2 20t T
Shown in Fig. 6 is the comparison of the convergence of the = 15+ Iy
. . . . il e

results for the dominant modg of a spherical cavity (1 m in 101 fe g
radius) with an increase in the number of unknowns for the two 051 N L
higher order models with a single curved hexahedron (field-ex- oop e L
pansion orders are varied from 3 to 7 in all directions) and 0 500 1000 1500 2000
a low-order tetrahedral-mesh solution [6]. This figure demon- Number of unknowns

strates great numerical advantages of the higher order FEM over

the low-order FEM in this case: the number of unknowns fd9-6. Comparison of two higher order FEM solutions (single-element models
o ith the | d ! del (1840) bei . of the second and fourth geometrical orders) and a low-order tetrahedral-mesh

1% accuracy with t e' ow-order moae (1 4 ) e'pg 17 tlmes%lution for the dominant mode, of a spherical cavity (1 m in radius) against

that (108) with both higher order models. We again observata number of unknowns.

significant additional improvement in accuracy as a result of

using geometrical modeling of the fourth-order instead of thable top-refine the higher order model with the second geomet-

second-order geometrical modeling. In other words, it is imposeal order below approximately 1% error in calculatiigdue
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getting the same level of accuracy if elements of the second
100 E Higher-order FEM with geometrical order (triquadratic hexahedra) are used (Fig. 7).
R 2nd order geometry
b \ —=— 1 element
I \ —4— Belements IV. CONCLUSIONS
— 10¢ —e— 27 elements
§ : \ This paper has proposed a novel higher order finite-element
5 *\.\‘ technique for 3-D microwave modeling and has presented its
5 \ implementation in eigenvalue analysis of arbitrary 3-D elec-
1 - tromagnetic cavities. The technique represents a Galerkin-type
~~~~~~~~~~~~ method employing hierarchical curl-conforming vector basis
functions of higher (1-10) polynomial orders defined in gener-
oA . alized curved hexahedra of higher (1-4) geometrical orders. The

0 500 1000 1500 2000 elements can be as large as approximaialy 2X x 2 (which
is 20 times the traditional low-order modeling discretization
limit of A/10 in each dimension). The new technique enables
Fig. 7. Percentage error in higher order FEM computation of the domina‘?ﬁ(ce"em field-distribution modeling. It has been demonstrated
modek, for a spherical cavity, modeled by one, eight, and 27 triquadfafie=  that entire rectangular and spherical cavities can be very accu-
2) hexahedral elements with thefield-a_pprox_imation polynomial o_rders ra_ngirpateW modeled by a single Iarge hexahedral finite element with
from 2 to 6, 1 to 4, and 1 to 3, respectively, in all three parametric coordinates e : . . . .
within individual elements. polynomial field-approximation basis functions of high orders.
The method also enables excellent curvature modeling. It has
been demonstrated that a sphere, which is customarily taken
to the inherent geometrical error of the model, whereapdtee 55 an example of difficulties with modeling of curvature by
finement in the model with the fourth geometrical order bri”%any researchers, can be equally efficiently modeled as a cube.
the analysis error quickly down to a fraction of a percent.  The flexibility of the new technique has allowed for a very
We notice a nonmonotonic (oscillating) error decrease in tgfective modeling of a cavity with a dielectric loading and a
low-error region with the fourth-order geometrical model igavity with a metallic ridge by means of only a few large finite
Fig. 6 [see also Table IV(b)]. This oscillation falls in the erroelements. All the examples have shown excellent properties of
margin for the particular mode and the particular numericglgher order finite elements in the context of heefinement
discretization of field equations in this example. Howevepf solutions for models with both flat and curved surfaces. The
the average error for all calculated modes in Table IV(b) thaésults obtained by the higher order FEM are compared with the
corresponds to the points for the fourth-order model in Fig. £&halytical solutions and with the numerical results obtained by
is 4.3%, 1.4%, 0.34%, 0.19%, and 0.15%, respectively. Najgferent low-order FEM techniques, which utilize electrically
that this (or similar) average error, which indeed decreas@sall triangular prisms, bricks, and tetrahedra, respectively,
monotonically when using-refinement, is actually relevantas finite elements. It has been observed that the presented
for “dialing” accuracy, i.e., for determining minimal field technique offers considerably improved accuracy, as well as
expansion orders needed for the specified level of desirg@nificantly faster convergence as the number of unknowns
accuracy or acceptable uncertainty of the results, in practiga¢reases. The reduction in the number of unknowns is by an
implementations. order of magnitude when compared to low-order solutions.
To further investigate numerical properties of different higher
order models of a sphere, we show in Fig. 7 the comparison
of the results in calculating the dominant modg for a REFERENCES
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